Essential dynamics of reversible peptide folding: memory-free conformational dynamics governed by internal hydrogen bonds.
نویسندگان
چکیده
A principal component analysis has been applied on equilibrium simulations of a beta-heptapeptide that shows reversible folding in a methanol solution. The analysis shows that the configurational space contains only three dense sub-states. These states of relatively low free energy correspond to the "native" left-handed helix, a partly helical intermediate, and a hairpin-like structure. The collection of unfolded conformations form a relatively diffuse cloud with little substructure. Internal hydrogen-bonding energies were found to correlate well with the degree of folding. The native helical structure folds from the N terminus; the transition from the major folding intermediate to the native helical structure involves the formation of the two most C-terminal backbone hydrogen bonds. A four-state Markov model was found to describe transition frequencies between the conformational states within error limits, indicating that memory-effects are negligible beyond the nanosecond time-scale. The dominant native state fluctuations were found to be very similar to unfolding motions, suggesting that unfolding pathways can be inferred from fluctuations in the native state. The low-dimensional essential subspace, describing 69% of the collective atomic fluctuations, was found to converge at time-scales of the order of one nanosecond at all temperatures investigated, whereas folding/unfolding takes place at significantly longer time-scales, even above the melting temperature.
منابع مشابه
Reversible peptide folding in solution by molecular dynamics simulation.
Long-standing questions on how peptides fold are addressed by the simulation at different temperatures of the reversible folding of a peptide in solution in atomic detail. Molecular dynamics simulations correctly predict the structure that is thermodynamically stable at 298 K, irrespective of the initial peptide conformation. The rate of folding and the free energy of folding at different tempe...
متن کاملEffects of Dimethyl Sulfoxide and Mutations on the Folding of Abeta(25-35) Peptide: Molecular Dynamics Simulations
The 25-35 fragment of the amyloid β (Aβ) peptide is a naturally occurring proteolytic by-product of its larger parent molecule that retains the amyloid characteristics and toxicity of the full length parent molecule. Aggregation of this peptide occurs rapidly in aqueous solutions and thus characterization of its folding process is very difficult. In the present study, early stages of Aβ(25–35) ...
متن کاملEquilibrium structure and folding of a helix-forming peptide: circular dichroism measurements and replica-exchange molecular dynamics simulations.
We have performed experimental measurements and computer simulations of the equilibrium structure and folding of a 21-residue alpha-helical heteropeptide. Far ultraviolet circular dichroism spectroscopy is used to identify the presence of helical structure and to measure the thermal unfolding curve. The observed melting temperature is 296 K, with a folding enthalpy of -11.6 kcal/mol and entropy...
متن کاملElucidating Peptide and Protein Structure and Dynamics: UV Resonance Raman Spectroscopy.
UV resonance Raman spectroscopy (UVRR) is a powerful method that has the requisite selectivity and sensitivity to incisively monitor biomolecular structure and dynamics in solution. In this perspective, we highlight applications of UVRR for studying peptide and protein structure and the dynamics of protein and peptide folding. UVRR spectral monitors of protein secondary structure, such as the A...
متن کاملHelix bending in alamethicin: molecular dynamics simulations and amide hydrogen exchange in methanol.
Molecular dynamics simulations of alamethicin in methanol were carried out with either a regular alpha-helical conformation or the x-ray crystal structure as starting structures. The structures rapidly converged to a well-defined hydrogen-bonding pattern with mixed alpha-helical and 3(10)-helical hydrogen bonds, consistent with NMR structural characterization, and did not unfold throughout the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of molecular biology
دوره 309 1 شماره
صفحات -
تاریخ انتشار 2001